
April 21, 2024

Design Project Report
Digital Twin for Swarm Applications

Bogdan Colţa
(s2689014)

Dan Negru
(s2683628)

Mihai Spinei
(s2759969)

Nathan Jongejan
(s2690314)

Yuliya Alyoshyna
(s2730669)

Supervised by: Yanqiu Huang

1

Abstract
Research on swarm applications involving drones in the domain of distributed applications is
currently limited. The objective of this design project is to develop a digital twin for swarm

applications. Achieving this goal requires the integration of pre-existing components from Thales:
the Distributed Simulator for MaritimeManet (DSM) and the Batman Topology Configurator (BTC).

Additionally, modifications to the DSM are necessary for enhancing its usability and a new user
interface has to be implemented for facilitating the process of creating topology configurations and

visualizing their respective simulations.

This report serves as a guide, describing the integration process, the improvements made to the DSM
components, the new user interface, and offering recommendations for future work in this project.

2

Contents
1. Introduction ... 5

1.1. Company’s background ... 5
1.2. Domain description .. 5
1.3. Assignment description ... 5
1.4. Report structure ... 5
1.5. Components description .. 6

2. Approach .. 7
2.1. Project management approach .. 7
2.2. Scope of the project .. 7
2.3. Communication with the client ... 7

3. Requirements Specification ... 8
3.1. Requirements capturing .. 8
3.2. Stakeholders ... 8
3.3. Functional requirements .. 8
3.4. Non-functional requirements ... 9

4. Risk Analysis ... 10

5. System Architecture .. 11
5.1. Introduction .. 11
5.2. Initial design ... 11
5.3. Architecture Style ... 11
5.4. Final Design .. 13
5.5. Components ... 13
5.6. Inter-component communication ... 15
5.7. Further Decomposition .. 17
5.8. Technologies/Frameworks .. 20
5.9. Configuration and Visualization component Design Details ... 21

5.9.1. Introduction ... 21
5.9.2. Hi-Fi prototype .. 21

5.9.2.1. Option 1 ... 22
5.9.2.2. Option 2 ... 22
5.9.2.3. Window for configuring a node .. 23

5.9.3. Prototype .. 23
5.9.4. Configuration data format .. 23
5.9.5. Activity diagram ... 24
5.9.6. Use cases ... 25
5.9.7. Use case diagram .. 26
5.9.8. Design choices ... 26

6. Results ... 28
6.1. DSM & BTC integration results ... 28
6.2. Configuration and Visualization interface results ... 29

6.2.1. User interface ... 29
6.2.2. Design comparisons and added features ... 29
6.2.3. Implementation details .. 29
6.2.4. Visualization results ... 30

3

7. Testing & Validation .. 31
7.1. Testing strategy ... 31

7.1.1. State handler .. 31
7.1.2. BTC handler ... 31
7.1.3. BTC network ... 31
7.1.4. Configuration and Visualization ... 31

7.2. Testing plan .. 32
7.2.1. State handler .. 32
7.2.2. Configuration and Visualization ... 33

7.3. Testing results .. 34
7.3.1. State handler .. 34
7.3.2. Configuration and Visualization ... 34

8. Future work ... 36
8.1. DSM - BTC integration .. 36
8.2. BTC Virtualization .. 36
8.3. Configuration page ... 36

9. Reflection On Process .. 37
9.1. Tasks distribution .. 37
9.2. Group reflection .. 37

10. Conclusion ... 38

4

1. Introduction

1.1. Company’s background
Thales Group is a multinational company that specializes in providing solutions and services in the
fields of aerospace, defence, security, and transportation. They offer a wide range of products and
services, including avionics, satellite communication systems, cybersecurity solutions, transportation
systems, and digital identity and security solutions. Thales serves a diverse customer base, includ-
ing governments, military organizations, airlines, transportation operators, and critical infrastructure
providers.

1.2. Domain description
In distributed mission systems, various platforms collaborate to execute missions, each tasked with
specific responsibilities. The effectiveness of this collaboration relies heavily on the seamless exchange
of information among the platforms. This information exchange is facilitated by a collection of
processes, forming a distributed application, which operates across the platforms. In maritime sce-
narios, these platforms include large ships, small boats, unmanned vehicles (both surface and aerial),
fixed maritime structures like oil rigs, and occasionally commercial ships. Together, they constitute
a distributed mission system capable of operating across vast distances, spanning several kilometres.
However, communication between these platforms poses a challenge due to the large maritime envi-
ronment and the constant movement of the sea.

1.3. Assignment description
MaritimeManet represents a novel ad-hoc wireless network specifically designed for distributed mis-
sion systems in naval environments. It addresses the challenges of communication in maritime settings
by making use of multiple directional antennas arranged in a sunflower pattern, known as a Multi-
Beam Antenna (MBA). This unique feature enables long-range transmission with moderate power
levels. Additionally, MaritimeManet incorporates a patented Distributed Neighbourhood Discovery
(DND) process, ensuring the establishment of the strongest possible wireless connections between di-
rectional antennas of nodes. As platforms move, causing changes in topology and wireless links, the
system adapts dynamically to maintain connectivity.

The assignment involves the integration of MaritimeManet components, including the Distributed
Simulator for MaritimeManet (DSM) and the Batman Topology Configurator (BTC), to create a lab-
oratory environment for testing distributed applications. The DSM simulates the behaviour of Mar-
itimeManet nodes and processes, while the BTC mimics the multiple directional antennas and allows
for topology changes. By integrating these platforms, users can test the behaviour of distributed ap-
plications in a controlled environment that accurately replicates the challenges of real-world maritime
communication networks. The objectives of the project can be found in Section 2.2.

1.4. Report structure
This report provides a detailed overview of the project process, from planning to results. It begins
with task decomposition and prioritization in Section 2, followed by specification and prioritization of
requirements in Section 3. A short risk analysis is conducted in Section 4. The overall architecture of
the system is elaborated upon in Section 5, describing the design of the new components and their

5

integration with the existing DSM and BTC. The results of the integration and the user interface are
detailed in Section 6. Testing strategy, approach, and results are outlined in Section 7. Suggestions for
future work are provided in Section 8, while the group reflection and task division are addressed in
Section 9. Finally, the report ends with a conclusion in Section 10.

1.5. Components description

Figure 1: Multibeam Antenna

▶ Distributed Mission Systems (DMS): Refers to multiple platforms working collectively to exe-
cute missions, where tasks are decomposed and allocated to individual platforms. Collaboration
among these platforms relies heavily on information exchange.

▶ Distributed Application: A collection of processes running on platforms in a DMS, responsible
for exchanging information between platforms.

▶ MaritimeManet: ad-hoc self-organizing wi re less network for radio communication. It is de-
signed specifically for distributed mission systems in naval environments. The MaritimeManet
node uses several beams arranged in a sunflower pattern as shown in Figure 1. In MaritimeManet,
the main idea is to automatically find other nodes and create the strongest wireless connection
possible between them. It does this by picking the best antennas at each node. As nodes move
around, MaritimeManet keeps checking and adjusting connections to maintain the best possible
link. So, if a node moves, it might switch to a different antenna or make new connections as
needed.

▶ Distributed Neighbourhood Discovery (DND): A patented process in MaritimeManet respon-
sible for establishing a connected network with the strongest possible wireless links between di-
rectional antennas of nodes.

▶ Distributed Simulator for MaritimeManet (DSM): A digital twin of MaritimeManet designed
for testing its functionality and improvements in a simulated environment.

▶ Batman Advanced: A routing protocol chosen for MaritimeManet to facilitate multihop for-
warding of data units in the network.

▶ Batman Topology Configurator (BTC): A tool used for testing the correct operation of Batman
on MaritimeManet by mimicking multiple directional antennas and enabling topology changes
in the network.

6

2. Approach

2.1. Project management approach
For the planning of the project, the team will utilize the waterfall method which is a project manage-
ment approach that has a linear progression. The reason for using the waterfall method is that the
requirements are fixed in the first iteration, which aligns well with the nature of the project. This ap-
proach is particularly suitable for this project since the scope is well-defined, and changes to require-
ments are expected to be minimal. The project will be divided into the following phases:

1. Requirements Analysis
2. System Design
3. Implementation
4. Testing
5. Documentation
6. Deployment
7. Evaluation

2.2. Scope of the project
▶ Integrating the DSM and BTC application is our primary goal for the project with the utmost

priority.
▶ Similarly is developing a method for the BTC to dynamically configure the topology based on the

DND output, simulating changes in the wireless network.
▶ An additional goal is to allow the integrated system to simulate more complex node paths and

movements, which would allow more detailed testing of the system.
▶ The current solution for presenting the output of the system should be improved and extended to

include additional features, such as monitoring the network conditions.
▶ Improve the capabilities of the input interface to allow for easier and more intuitive configuration

and visualization page.
▶ Testing the resulting integrated system with an example application defined by THALES
▶ Conduct thorough testing to ensure that the integrated DSM-BTC system accurately reflects the

behaviour of a real swarm in terms of performance (delay, bandwidth, loss).
▶ Document the integration process, including any modifications made to DSM and BTC.
▶ Improve the maintainability of the project by providing user documentation for operating and

configuring the integrated system.

2.3. Communication with the client
The team maintains a weekly meeting every Wednesday with the client. Ahead of each meeting, a
progress report is submitted to the client, providing an overview of work done and problems faced.
During the hour-and-a-half session, the team engages in interactive discussions, addressing queries,
presenting progress, and showcasing completed work. Additionally, a Microsoft Teams channel en-
sures continuous communication, allowing the client to share resources and communicate changes
outside the scheduled meetings.

7

3. Requirements Specification

3.1. Requirements capturing
The requirements for the integration task were discussed and verified with the client. It was necessary
to elicit and discuss the requirements at the start of the project, as we utilized the waterfall project
management approach. Nevertheless, requirements regarding configuration and visualization were
covered later in the project; the client obtained these requirements through communication with end
users, which they then shared with us. The configuration and visualization requirements took a more
iterative approach in order to be flexible and find a variety of solutions.

3.2. Stakeholders
We would categorize all the following stakeholders as end-users of the DSM and BTC:

▶ Naval Operators
▶ Maritime Engineers
▶ Disaster Response Teams
▶ Researchers

3.3. Functional requirements
The following requirements are listed and prioritised using the MoSCoW method:
M — Must have — non-negotiable needs for the project.
S — Should have — essential to the product, project, or release, but they are not vital.
C — Could have — nice features to have.
W — Won’t have — features that fall outside the scope of our project.

1 Integration MSCW
1.1 The DSM and BTC should be able to establish a connection between each other M
1.2 The DSM should be able to communicate changes in its topology to the BTC M
1.3 The DSM should be able to communicate link properties to the BTC S
1.4 The BTC should be able to simulate bandwidth, delay, and packet loss S
1.5 The BTC should simulate given link properties per link S
1.6 The DSM should be able to track changes in topology and store them M
1.7 The BTC should be able to realize any possible topology M
1.8 The BTC should be able to connect/disconnect any 2 nodes virtually M
1.9 Two directly unconnected nodes should not be able to communicate directly with each

other
M

1.10 If the topology changes, two nodes which stay connected should be able to continue
to communicate without interruption

S

2 Configuration and Visualization
2.1 The route configurator should enable the user to specify a node’s trajectory, either via

waypoints or drawn line
S

2.2 The route configurator should support a split-join movement in the simulation M
2.3 The route configurator should be able to save a movement sequence to a file M

8

2.4 The input configurator should allow the user to drag and drop nodes to specify their
initial location

M

2.5 The input configurator should allow the user to configure the node’s settings such as
type of antenna used and translation/rotation speed

M

2.6 The input configurator should allow the user to select a node by clicking on it for fur-
ther modifications

M

2.7 The input configurator should allow the user to add/delete a node by clicking a button M
3 Output presentation

3.1 The DSM should be able to present the current topology in a GUI S
3.2 The BTC should be able to capture the routing table configuration and present it in

the GUI
C

4 Virtualization
4.1 The BTC should allow the configuration of a virtualized Batman environment C
4.2 The current Batman environment should be replicated in a virtualized environment C

3.4. Non-functional requirements
The output presentation of a topology should be user-friendly
The configuration and visualization of topology should be intuitive and graphically based, allowing
the user to specify a node’s position via drag and drop, configure a node’s trajectory graphically, etc.
The system should have low latency, ensuring that the exchange of information between DSM and
BTC components occurs with a response time (time taken to send a message and receive a response)
not exceeding 1 second
The BTC should be extensible to allow further development on top of our test bed

9

4. Risk Analysis

1. Requirements stability:

Since the waterfall methodology will be used as a project management tool, the requirements are fixed
in the beginning; to mitigate this risk, we will conduct thorough requirements analysis and verify them
with the client.

2. Technical stability:

Integrating components and improving the UI might have unforeseen technical challenges; to mitigate
this risk, we maintain flexibility in our development phases.

3. Graphical solution stability:

The graphical solutions chosen to be investigated at the beginning of the project might not be suitable;
conduct thorough evaluation and prototyping of graphical solutions before integration; have a fallback
plan for an alternative solution.

4. Timeline constraints:

Unforeseen delays may occur; to mitigate this risk we will have daily meetings, where our team plans
what will be done for the day and check in regularly on the progress.

5. Communication stability:

Ineffective communication and misunderstandings; to mitigate this risk we will have regular meetings
with the client each week, biweekly meetings with the supervisor and daily meetings with each other
to ensure that everyone is up-to-date with the development process.

10

5. System Architecture

5.1. Introduction
This section will describe the functional architecture of the integration between the Distributed Simu-
lator for Maritime-Manet and the Batman Topology Configurator, as well as the additional components
developed to interact with the system and the architectural changes required for this integration. We
will start with an overview of the whole system and compare it to the initial structure. We will describe
each component, its responsibilities and the data interfaces used for communication, as well as the
flow of data through them.

5.2. Initial design

Figure 2: Initial structure of the DSM

Figure 2 represents the high-level structure of the DSM system. In this architecture, the Visualization
Component handles communication with the Clients directly to receive the state of the connections
between the nodes. To be able to develop additional components which would interact with the DSM
without changing the high-level structure, would mean each additional module interfacing with the
DSM would also need to handle these communications with the clients and sim handler separately, as
well as changing the client and sim handler to be aware of the additional components. Additionally,
the data required by multiple components would need to be duplicated across the system, instead of
being stored and processed in a single component.

5.3. Architecture Style
For our project’s purposes, we decided to use Data Centred Architecture. Data Centred Architecture is
characterized by data being centralized and accessed frequently by other components, which possibly
modify data. The primary goal of this style is to ensure integrity of data, meaning that all the data
that is flowing through the system can be accessed only from a single source, preventing discrepancies
between multiple components containing different data. A Data Centred Architecture consists of dif-
ferent components that communicate through a shared data repository. The components access shared

11

data structures, meaning they are not dependent on each other to properly function. This architecture
aims to organize and manage data in a way that ensures that it is accessible by other components and
consistent across the whole system, while also keeping component coupling minimal.

The main advantages of the Data Centred Architecture are the following:

▶ Adaptability and Flexibility: Using a Data Centred Architecture ensures that components
within the DSM are independent of each other’s functionality and implementation, which allows
for easy modifications and extensions.

▶ Scalability: This design allows us to easily scale the system to multiple devices, as we have a
centralized state which can be accessed by multiple devices concurrently.

▶ Data Consistency: By using this architecture style, we can ensure that the data that flows within
the components of the DSM is the same across the complete system. This means the data space
will collect data from some components and then update the other components to ensure that the
data’s state is the same in all components of the DSM.

In the project’s context, it allows us to reduce the number of connections between various components
and simplify the development process for the current project as well as for future work. As a result of
applying this design pattern, the components that are part of the DSM and require continuous updates
need to be connected to a shared data space, in our case represented by the State Handler component.
Moreover, we call our data space persistent since it will always store the previous state of the data, so
we can compare it to the current state to determine whether the simulation changed and decide if we
need to update the other components. This data space will be deployed in our system as a component
that will continually update its local data structures depending on the incoming messages coming from
the simulation.

Figure 3: Producer / consumer model

In Figure 3, we show a simplified diagram of how we will incorporate this architectural style into
our system. As shown, we will have two types of components that will communicate directly with
the data space. The first type of component communication will only receive new data from the data
space and update the component’s local data, as this is shown in the diagram through the one-way
arrow that points from the data space to the component. The other type will send generated data to
the data space. For example, the Output Visualization Component will only retrieve the data from the
data space, while Client Components will update the state of the connection data in the data space.

12

5.4. Final Design

Figure 4: High level architecture of the system

In Figure 4, we present a high-level overview of the architecture we will use to implement the sys-
tem. The main objective of this architecture is to have a State Handler that will store the connections
between nodes and their locations. As a result, we can use the state handler to send the required infor-
mation needed to change the topology of BTC and show the location of nodes in the graphical output
components. Because of this decision, the clients are not required to interact directly with other com-
ponents besides the Sim Handler and the State Handler. Therefore, this architecture still retains the
main structure of the initial architecture, meaning that the initial DSM simulation code will require
minimal changes. This allows for easy addition and connecting of new components, which will ease
future development, while also reducing needed refactoring.

While currently in the design, the DSM simulation components live on the same device, it is important
to note that because inter component communication is done through sockets, the system can be dis-
tributed on multiple devices if required, for example by running the BTC adapter on the APU device.

5.5. Components
As seen in Figure 4, the system is composed of the following components: Simulation Handler (or Sim
Handler), Clients, State Handler, BTC Adapter, Simulation Visualizer, User Server / Configuration and
the Open VSwitch. In this section, we will briefly articulate the primary functionalities and purpose
of each component within the system.

▶ The Sim Handler
It is mainly responsible for calculating the radio paths, using parameters like antenna gains and
height, which are then sent to the Clients. Another essential responsibility is the calculation of the
movement for each node. This includes taking the current locations of the node and recalculating
the new locations based on the values of the velocity, rotation, and others. After the recalculation
is completed, the new locations are sent to the state handler, which is done once for each iteration
of the DSM.

13

▶ The Client
Is responsible for receiving the peer valid paths and radio paths between other clients, which are
generated inside the Sim Handler, and then calculate the valid links according to vacant frequen-
cies and other factors. The latter is done by the DND module running an algorithm that determines
which sector must start, stop or handover connections. For each iteration, the Clients send to the
State Handler which other clients it is connected to and through which sector of the node and
communication frequency the connection is established.

▶ The State Handler
It is responsible for receiving connection data from all the Clients and position data from the Sim
Handler. It processes the incoming data and then sends it to the components which require it.
From the Sim Handler, it receives the newly calculated locations of the nodes, which are then
stored and sent to the Graphical Output and User Control Server. From each client, it receives its
current connections, which are stored locally. The state handler then verifies which pairs of clients
are connected both ways and compares them to the previous connections. If a change is noticed,
then the State Handler will send the required updates to the subsequent components. The state
handler is also responsible for calculating the link bandwidth between each pair of connected
clients and forward this value to the BTC adapter.

▶ The BTC Adapter
This component is responsible only for receiving the added and removed connections and the
connection bandwidth from the State Handler. It then is responsible for configuring the Open
vSwitch based on this data. When the BTC receives the connections, it generates the commands
needed for modifying the topology / link proprieties. Using secure shell (SSH) the commands
are sent to the APU device, which based on this, then modifies the topology/proprieties of the
network.

▶ The Simulation Visualizer
This component represents the initial interface used by the DSM. It is responsible for displaying
the nodes, active and inactive connections on the map while also showing the handover algorithm
between the sectors of the nodes. Active connections are the ones that are currently used by the
Clients to communicate, while the inactive ones are connections that are not used due to a lower
signal strength.

▶ The User Control Server
This component serves the newly developed web-based user interface. It is firstly responsible
for serving the webpage used to configure and visualize the DSM system. It also handles user
commands, such as starting / stopping the simulation. As such, this component is responsible for
initializing and configuring the DSM system at each run.
The webpage hosted by this server is mainly used as a configurator, where the user can interact
with the map by adding nodes, waypoints, and movement metrics for each node. This information
is saved in the form of a configuration file represented through JSON. The configuration’s struc-
ture was customized by us to fit our needs and the context of the requirements. This page also
allows visualizing the simulation, being an improvement over the initial Simulation Visualizer
component.

▶ The Open vSwitch
This component represents the virtual switch used for modifying the topology of the network
running on BATMAN. This component runs the commands originating at the BTC Handler to
change the topology according to the DSM simulation.

14

5.6. Inter-component communication
This section describes each interface of the architecture, which includes how each component is com-
municating with other components and how the data is moving within the system. Also, communica-
tion between every component of the system is done using sockets.

Component 1 Component 2 Data Exchanged
1 Sim Handler Client The Sim Handler sends to the Client the newly cal-

culated radio paths of the nodes.
2 Sim Handler State Handler The Sim Handler sends to the State Handler a JSON

structure containing the type of the message and the
connections of the client sending the message.
{
“type” — message type,
“O” – locations,
}

3 Client State Handler The Client sends to the State Handler a JSON struc-
ture containing the type of the message and the
newly calculated locations of the nodes.
{
“type” - message type,
“node_id” – id of the node that sent the message,
“active” – the nodes to which the current node is
connected,
“inactive” – inactive connections of the node,
“freqs” – the frequency of each sector of the node
}

4 State Handler BTC Adapter The State Handler sends to the BTC Adapter a JSON
structure containing the type of the message, and
the added and removed connections inside the DSM.
{
“type” - message type,
“new” – newly added connections,
“removed” – removed connections,
“updated” – bandwidth for each connection
}

5 State Handler Simulation Visual-
izer

The State Handler sends a JSON structure contain-
ing the type of the message, the added and removed
connections inside the DSM, and the new locations
of the nodes.
{
“type” - message type,
“O” – locations,
“active” – the nodes to which the current node is
connected,
“inactive” – inactive connections of the node,
“freqs” – the frequency of each sector of the node
}

15

6 User Control Server State Handler User Control Server sends to the State Handler com-
mands regarding the DSM, for example starting or
stopping the simulation. It also receives from the
State Handler a JSON structure:
{
“type” - message type,
“node_id” – id of the node that sent the message,
“active” – the nodes to which the current node is
connected,
“inactive” – inactive connections of the node,
“freqs” – the frequency of each sector of the node
}

7 User Control Server Configuration and
Visualization

The Configuration Page sends to the Server a con-
figuration JSON structure containing information
about the locations of the nodes, their waypoints,
and movement metrics. This file is read by multiple
components at the start of the DSM simulation. It
also can send commands to start or stop the simula-
tion inside the DSM. The User Control Server sends
to the Visualization Page a JSON Structure:
{
“locations” - message type,
“connections” – active connections,
“inactive” – inactive connections,
“freqs” – frequency for each sector of a node
}

8 BTC Adapter Open vSwitch The BTC Adapter sends SSH open flow commands
used to modify the topology inside the BATMAN
network. SSH traffic-control commands used to
modify the link proprieties between nodes.

▶ Interface 1: Sim Handler and Client
These components are communicating with each other to find new connections between the other
Clients, based on metrics, like signal strength. Once the Sim Handler is connected to all the Clients,
it starts running based on an iteration system, which includes handling incoming messages from
Clients, mainly valid paths that were determined by the Clients in the previous iteration. Besides
this, the Sim Handler also sends relevant radio paths and discovered peer sectors to other Clients.

▶ Interface 2: Sim Handler and State Handler
Once the locations of the nodes have been updated, the Sim Handler will send a message to the
State Handler that contains the new locations of the nodes. When the State Handler receives the
message, based on the type of message, it will store the new locations in a local data structure.

▶ Interface 3: Clients and State Handler
For each iteration, all Clients will send their current connections and through which sector the
connection is established to the State Handler. When the State Handler receives the message
through the socket, it will determine the two-sided connections and store them in a local data
structure.

16

▶ Interface 4: State Handler and BTC Adapter
After each iteration of the DSM, when the State Handler receives a connection data structure from
a node, it will check if new connections have been added. In the case of new connections, the State
Handler will send the new and removed connections between the clients to the BTC Handler,
which will receive and then store them for further processing needed when sending commands
to the OvS.

▶ Interface 5: State Handler and Simulation Visualizer
With each iteration of the DSM, after new locations of the nodes are calculated and new connec-
tions are received from the Clients, the State Handler receives them and then sends the new loca-
tions, the current active and inactive connections to the Simulation Visualizer. Inside the Simula-
tion Visualizer, the new locations, and connections will be processed, and then the representation
will be updated according to the changes.

▶ Interface 6: User Control Server and State Handler
Whenever the user decides to start or stop the simulation inside the DSM using a button on the
webpage, the User Control Server will send to the State Handler a command to do the intended
action. Also, with each iteration of the DSM, the State Handler will send to the User Control Server
the updated locations, the frequency of each sector of every node, active and inactive connections
that will then be saved locally using a data structure.

▶ Interface 7: User Control Server and Configuration and Visualization Page
The User Control Server serves the Visualization Page by sending the locations and connections
when the Page send a GET request with the path ‘/get_simulation’. Also, the Configuration Page
can send commands to the User Control Server to start or stop the simulation inside the DSM by
the sending requests with the following paths: ‘/start_simulation’ (POST request) and ‘/stop_sim-
ulation’ (GET request). The Configuration Page sends a POST request since it needs to send to the
DSM a JSON configuration that stores information about nodes, their waypoints, and movement
metrics for each node. At the start of the DSM, each component within the DSM will read the
configuration file for specific data.

▶ Interface 8: BTC Adapter and Open vSwitch
Whenever the State Handler receives new connections from a client, it will send the added and
removed connections to the BTC Handler. Upon receiving both lists, the BTC Handler will gen-
erate SSH commands to be sent to the APU to modify the topology of the network running on
BATMAN.

5.7. Further Decomposition
In this paragraph, we will discuss the more complex components by further decomposing their actions
in activity diagrams to represent the control flow and actions each component takes during the sys-
tem’s runtime. They show what each component is doing at each point of its lifetime, and the decisions
that affect its control flow. The choice to use activity diagrams was motivated by the nature of the
components of the system, each having an event-based and concurrent structure. We believe this un-
derlines the important implementation details and presents them in a easily understandable diagram.

▶ Sim Handler

The Sim Handler is mainly responsible for initializing the simulation, handling incoming client mes-
sages, calculating the radio paths between the clients and updating node locations. Most of the Sim
Handler implementation / structure is left unchanged from the previous development done on the
DSM. Because this component is responsible for a large part of running the DSM simulation, we have

17

refactored the Sim Handler to decouple its functionalities from each other, by separating the calculation
of node movement from the calculation of radio paths. This mainly allowed us to modify the move-
ment of the nodes to allow waypoint-based movement independently of the radio path calculation.
Secondly, it allows for the development of more complex features such as fast forwarding through the
movement to a time point of interest, by either increasing the frequency at which the update function
is called or implementing a different movement function.

Figure 5: Activity Diagram of the Sim Handler

▶ State Handler

Within the DSM, the State Handler represents the data space of the system, where we store all the
current information about the connections and location of the nodes. The State Handler has a local
dictionary that will store the required data and another one that will store the previous state of system,
since we want to be able to find out which changes have been made to the system, so we can update the
topology of the BATMAN and update the graphical output of the system. Initially the component will
read the configuration file, in order to know the number of nodes and the number of sectors of each
node. After that, the program will continuously wait for incoming messages though its socket. Once a
message is received, it will read the type of the message and then act accordingly. In the case the type
specifies that the data contains the location of the nodes, the local data structure will be updated with

18

the new locations. If the type specifies that the message contains connection data, the local structure
that keeps track of connections will be updated and compared to the previous state to find out the
differences. After this, the differences will be sent to other components that need to modify the net-
work topology or its representation. Additionally, for each connection it will compute the respective
bandwidth, and in the case of a change will send that to the BTC handler additionally to the changed
connections.

Figure 6: Activity Diagram of State Handler

▶ BTC Adapter

As we have mentioned previously, this module is responsible for receiving the new and removed con-
nections from the State Handler, and then sending commands to the Open vSwitch. When this com-
ponent starts running, it will read the configuration file for the number of nodes that are present in the
network. Following this, it will then continue waiting for incoming messages from the State Handler
through its socket. When it receives a message, it will read its type and will act according. If the type
of the message specifies that the message contains data about current connections, the function will
generate multiple OvS commands for new or removed connections and Traffic Control commands for
updated bandwidths and send them to the APU to change the topology inside the BATMAN network.

Figure 7: Activity Diagram of BTC Adapter

19

5.8. Technologies/Frameworks
▶ Programming Language

To develop the integration between the systems, we will be using multiple technologies and
frameworks. Newly developed components which rely on the existing DSM will be developed in
Python, since the DSM is already implemented using this programming language. The decision
to use Python for the development of the DSM was made by the team who previously worked
on developing the system, as it allowed for easier implementation of the simulation visualization.
As a result, they have re-implemented the system in Python, which was initially developed in C.
Despite this, the drawing process was done using ‘Matplotlib’ — a plotting library for the Python
programming language. As this library is primarily intended for plotting, it is highly inefficient
when used for displaying dynamic systems which require multiple updates per second. Matplotlib
imposes a performance penalty, being able to only display up to 20 nodes before it becomes un-
usable. Because of this, we have decided not to implement the new User Interface in Matplotlib,
meaning that in the future the DSM system can be transitioned back into the C programming
language, as it is more suitable for embedded systems and handles memory more efficiently. Un-
fortunately, this is out of the project’s scope as time is a limited resource, so it is not possible to
switch back to C, meaning that we will continue using Python for the purposes of this project.

▶ User Interface
We have decided to implement the new User Interface using HTML and JavaScript. The decision
was made since it would allow for a more efficient, user-friendly and responsive user interface.
Besides this, keeping in mind future development, this would benefit the client a lot, as the inter-
face could be easily ported to other devices, for example a phone or a tablet, and would allow
accessing the simulation remotely.

▶ Frameworks and Libraries
For mathematical computations that are done by the simulation method, we have chosen to con-
tinue using NumPy, as it is a universal standard used for manipulating numerical data in Python.
To send shell commands through ssh more efficiently to the Open vSwitch using the BTC Handler,
we have decided to use the Paramiko library. This library was created for common client use-cases
like running remote shell commands.
To simplify the development of the User Control Server, we decided to use the Bottle Python li-
brary, as it is very efficient, lightweight, and dependency-free. It allows us to easily specify API
endpoints and statically host web pages.
To easily display the output of the simulation, we decided to use d3.js — a JavaScript library which
allows us to easily and dynamically manipulate scalable vector graphics.

▶ Inter-process Communication As we described above, our system consists of multiple com-
ponents that are running in parallel, communicating and sending data between each other. The
communication is done using sockets, which is a simple and an efficient enough way for our
context to send data between programs and threads. The choice to use sockets for inter-process
communication was done by the previous team working on the DSM, and motivated by the fact
that this better aligns with how the system would work in reality. The messages that are sent are
following a predefined protocol that specifies its type, so that the thread that receives the message
knows how to handle the data. Also, the data that flows within the system is structured in JSON,
because of its language-independent data format, as this would benefit when sending data to the
Graphical Output used to make real-time changes to the User Interface.

▶ Execution through iterations
Since the two of the main components of the system, the Sim Handler and the Client, are running
based on a periodic execution, the other components are also updated according to this time-based

20

structure. At each iteration, both modules execute the same set of instructions in sequence, which
includes collecting the data, processing it and then sending it to other components. Consequently,
the Sim Handler receives data from them at each iteration, and in case of updated data, the other
components will receive the new data. So, we can generalize and state that the whole system is
running on a time-based scheme. Besides this, we have also separated the movement and calcu-
lation of radio path logic inside the Sim Handler. As a consequence, updating the locations of the
nodes and calculating paths between the clients can be done at different iteration frequencies, this
will not desynchronize both iterations since the radio paths will be calculated according to the
last calculated location. As a result, this will help in the future with scalability and performance,
but also with being able to easily modify the movement engine of the system.

5.9. Configuration and Visualization component Design Details

5.9.1. Introduction
The current DSM configuration and visualization component is limited and requires specifying the
node’s settings via a text input, which is not very intuitive. Also, current input only considers the
node’s movement in a linear fashion, and is statically defined initially, not allowing for changes in the
movement based on time.

The new improved configuration and visualization component will have the following improvements:

▶ Platform proprieties
• Nodes will be defined based on their platform properties
• Platforms define the max speed and angular velocity of the node

▶ Graphical based input
• Move nodes by means of drag and drop
• Adding/removing nodes using buttons

▶ New route configurator
• Configure the node’s route by means of waypoints
• Each waypoint’s arrival time can be specified
• Copying a route and pasting it to another node

▶ Loading and saving configuration

The node configuration window will contain text-based input with the following proprieties options
per node:

▶ Number of sectors
▶ Initial node’s coordinates and rotation
▶ Rotation speed
▶ Translation speed

5.9.2. Hi-Fi prototype
We designed a hi-Fi prototype to specify the general look of the new input generator. Currently, there
are 2 options for the configuration and visualization component user interface, the main difference
between them being the position and shape of the navigation bar menu.

The interaction with the interface will be as follows:
▶ The user can click on a node to select it

• After the node is selected, user can delete it by clicking ‘-’ sign
• User can configure node’s properties by clicking on ‘Configure node’ button
• ‘Movement’ button allows the user to specify a route for the node, after clicking on it:

∙ To create a waypoint, user can click on a canvas and a waypoint would be created

21

∙ To adjust a node’s location, the user would need to click on the waypoint and drag &
drop it

∙ To delete a waypoint, user would need to select the waypoint and click on the ‘-’ button
∙ To adjust arrival time at a waypoint, user would just click on a way point and enter time

in the appeared window
▶ The user can add a new node with a ‘+’ sign
▶ The user can save the configuration with ‘Save Config’ button
▶ To start the simulation, user would need to click on ‘Simulate’ button

5.9.2.1. Option 1

5.9.2.2. Option 2

22

5.9.2.3. Window for configuring a node
The window for configuring a node allows the user to update its properties, such
as the number of sectors on the node’s antennas, initial location in terms of the
X and Y coordinates, Theta (direction of a ship’s bow), Vtran (translation speed)
and Vrot (rotation speed). After the user is done with inputting the node’s set-
tings, they need to click save.

5.9.3. Prototype
A prototype was developed to showcase the client
usability of some new features specified previ-
ously, including adding new nodes and waypoints
using mouse clicks, drag and dropping nodes and
waypoints, and easily removing them. The pro-
totype served a purpose of getting feedback from
the client and also as an initial backbone of the
actual implementation.
This prototype only displays how the user would
interact with the graphical user interface; it does
not highlight the final user interface design.

5.9.4. Configuration data format
The configuration and visualization will also define a JSON file that will be further used in the DSM
to specify the program what the initial locations of the nodes are, their movement definitions, and the
locations and the arrival time of the waypoints. When the DSM starts the simulation, it will read the
configuration file and set up the movement for each node. We defined a new structure for the JSON
configuration to fit with our new requirements and not interfere with the current Maritime Manet
Simulation component. The old configuration file had a different structure which did not facilitate
waypoint based movement.
Breakdown of its structure:

▶ ships: An array containing objects representing individual ships.
• Each ship object contains the following properties:

∙ initialX: The initial x-coordinate of the ship’s position.
∙ initialY: The initial y-coordinate of the ship’s position.
∙ speed: The speed of the ship.
∙ rotation: The speed rotation of the ship.
∙ initialR: The initial facing radius (orientation) of the ship.
∙ antennaN: The number of antennas on the ship.
∙ ship: An object containing the ship’s current position and radius.

▶ X: The current x-coordinate of the ship’s position.
▶ Y: The current y-coordinate of the ship’s position.
▶ R: The current facing radius (orientation) of the ship.

∙ waypoints: An array containing objects representing the ship’s waypoints.
▶ Each waypoint object contains:

• wx: The x-coordinate of the waypoint.
• wy: The y-coordinate of the waypoint.

▶ world_X: The width of the canvas.

23

▶ world_Y: The height of the canvas.

5.9.5. Activity diagram

Figure 8: Activity Diagram for configuration and visualization

Description of Figure 8:
1. The user opens the input generator
2. He either loads a configuration or skips this step
3. Then he can either start the simulation (given that there are some nodes), or he can select a node

or add a new node
4. If a user creates a new node, then that node is automatically highlighted as it is selected
5. A selected node can either:

▶ Be removed
▶ Change its route (route modification details are not captured in this diagram):

• A waypoint can be created
• Waypoint can be deleted
• Waypoint can be moved
• Waypoint arrival time can be modified

▶ Be dragged & dropped
▶ Be configured with node configurator window:

• Initial location adjusted with X and Y coordinates
• Translation speed can be modified
• Rotation speed can be modified
• Number of sectors can be specified

6. Then the user will go back to step 3

24

5.9.6. Use cases

Use Case Description
1 Start Simulation If a user is done with configuring the network simulation, then they

can click on ‘Simulate’ button and the simulation will start. During
the simulation, the user cannot make changes to the nodes, they can
only stop the simulation.

2 Select Node User can select a node (for further manipulations) by clicking on it.
3 Create a node User can create a new node by clicking on a button.
4 Delete a node Selected node can be deleted by clicking on delete button.
5 Configure node position Selected node’s position can be configured either manually (with X

and Y coordinates) or with drag & drop.
6 Configure position man-

ually (with x and y coor-
dinates)

Selected node’s position can be manually entered in the configura-
tion window utilizing X and Y coordinates on a plane.

7 Configure position
graphically (drag and
drop)

Selected node’s position can be adjusted by dragging and dropping
the node in the space.

8 Select number of anten-
nas from a drop-down
list

a Selected node’s type of antenna can be changed by selecting an
option from a drop-down list in the configuration window.

9 Specify translation speed Selected node’s translation speed can be specified in the configura-
tion window.

10 Specify rotation speed Selected node’s rotation speed can be specified in the configuration
window.

11 Movement configuration Users can configure node’s movement parameters for nodes within
the simulation environment, such as translation speed and rotation
speed.

12 Draw a path of a node
with waypoints

Selected node’s path can be specified by creating waypoints, to do
that a user can just click on an empty space in the canvas

13 Confirm path Confirm and finalize the drawn path for a node within the simula-
tion environment, ensuring that it follows the intended trajectory
during simulation.

14 Clear path Selected node’s path can be cleared where all waypoints are deleted.
15 Save configuration Saves the current network configuration to a JSON file.
16 Load configuration Loads a JSON configuration file and shows the network situation on

the plot, allowing the user to adjust it or start the simulation.

Table 1: Configuration and visualization brief use case descriptions

25

5.9.7. Use case diagram

Figure 9: Use Case Diagram for configuration and visualization

Figure 9 generalizes all the use cases that would be available to the user with the configuration and
visualization component. While we might later adjust small features, the overall usability of the con-
figuration and visualization will remain the same.

<< Include >> tag means that the use case is mandatory, so if a node is created that means that a node
must be automatically selected as well (after it is created)

<< Extend >> tag means that the use case is optional, so for example, entering a movement configu-
ration mode does not necessarily mean that a waypoint must be created by default, a user can enter
and leave the movement configuration mode without adjusting the route whatsoever.

5.9.8. Design choices
The design choices for the new configuration and visualization component were made to address sev-
eral limitations of the current system and to enhance user experience.

▶ Web-based user interface: the decision to develop a web-based user interface comes from its
inherent scalability and adaptability, offering potential expansion into a mobile application in the
future. Using programming languages like JavaScript and HTML provides significant flexibility
and customization options. Additionally, the team’s familiarity and experience with these tech-

26

nologies simplifies the development process. Although alternatives such as Pygame or Vispy were
considered, the widespread popularity, modularity, and ease of JavaScript and HTML made them
the preferred choice to other options.

▶ Waypoint based movement: the decision to implement waypoint-based movement, rather
than drawing paths with a mouse or using command-based controls (e.g., right/left/up/down),
was made after consulting with the client to determine the most suitable method for end-users.
Through discussions with potential end-users, it was established that waypoint-based movement
aligns best with the domain of the application, as it is widely used and easily comprehensible.
Despite its limitations, such as difficulties with sharp corners and limited curvature, waypoint-
based movement offers convenience and ease of use compared to drawing paths with a mouse or
using command-based controls, which may lack precision or be time-consuming.

▶ Available node options: the majority of node options, such as number of sector, translation, and
rotation speed were retained from the existing DSM input configurator.

▶ JSON Configuration Format: the new JSON configuration format ensures compatibility with
the existing DSM.

▶ Graphical user interface: the main design choice was to make the new input configurator
graphically based, so that the user’s can more intuitively specify the network situation and in-
teract with it visually. Functions like dragging and dropping nodes, adding/removing nodes, and
configuring routes via waypoints enhance usability and intuitiveness.

27

6. Results

6.1. DSM & BTC integration results
The implementation of the DSM & BTC integration stayed true to the design. To recap, the features it
implements are:

▶ Connections between the ALIXes are dynamically created/updated/deleted according to the out-
puts of the DSM simulation.

▶ The connections also dynamically set their bandwidth according to what would be the realistic
bandwidth based on the wireless communication specification.

Implementation details:

The details of how this ended up being implemented are as follows. We opted for doing the computa-
tion of which ALIX is to be connected to which ALIX on the laptop also running the simulation. This
was done mostly due to ease of development. This way we would not have to update anything on a
different machine, keeping the development environment limited to just our own laptops.

The tooling used to make/update the connections on the BTC were ovs-ofctl (openflow) and tc (traffic
control). The openflow tool was chosen by the previous student who worked on the BTC. It allows
us to change the connection between nodes using just the command line, which would prove useful
since we could then use SSH to update the APU remotely. Secondly, we use the tool traffic control.
This comes with a module called NETEM, short for network emulation. Through this, we can configure
certain interfaces to adopt network conditions. We dynamically use this to set different bandwidth
conditions, simulating congestion/bad connection at sea. As well as setting a default rate of packet loss
of 2%. Again, this tool is also command line based, allowing us to use SSH for both of these.

Lastly, since the computation of which ports should be connected to which other ports is done on
the user device and not the APU itself, we needed a way for assigning and keeping track of what is
happening on the APU. For the first iteration of this system, we dedicated a port per ALIX to each
other ALIX, which we were able to virtually connect when required. This kept a lot of the implemen-
tation simple but wouldn’t be very scalable, so we updated this to a new system. In this system, each
ALIX has x ports, where x is the max amount of other nodes it can be simultaneously connected to.
Determined either by how many other nodes or how many antennas, whichever is smaller. And the
system would then randomly assign unassigned ports for connections, keeping the required number
of ports per ALIX down, even if the system were to scale massively.

28

6.2. Configuration and Visualization interface results

6.2.1. User interface

Figure 10: Final user interface

6.2.2. Design comparisons and added features
The final design varies a bit from the hi-fi prototype, as can be seen in Figure 10. Among the added
features we have:

▶ Add node is replaced with add ship. The ship’s size defines the number of antennas; the user can-
not change this value.

▶ There are more removal options under the remove button such as: selected ship, last waypoint of
selected ship, all waypoints for selected ship or all ships and waypoints.

▶ The configuration window was removed as per client’s request, since there’s no more need for
that.

• Arrival time can be added to each waypoint. The speed of the node is dictated by the distance
and arrival time at the waypoint. If arrival time is not specified, the ship uses its maximum
speed.

▶ The scale of the graph can be adjusted by clicking on the ‘Container Dimension’ button.
▶ Hotkeys are added for user’s convenience, for example, when a node is selected and a backspace

or delete key is pressed then the selected ship is removed.
▶ To deselect a node and finalize the route, user has to on ‘Finish Route’ button.

6.2.3. Implementation details
We have utilized HTML and JavaScript for setting up network’s environment within a container. It
utilizes the D3.js library for SVG manipulation, such as drawing nodes, waypoints and moving the
nodes. The JavaScript code contains various functionalities, including coordinate transformation, con-
tainer setup, ship management (such as adding, dragging, and removing ships), waypoint management

29

(including adding and dragging waypoints), configuration management (loading and saving configu-
rations), and event handling.

The HTML content includes a navbar with buttons for adding ships, removing ships/waypoints, setting
container dimensions, and managing configurations, along with an SVG container for visualization
and a DIV element for displaying a hint to add waypoints.

6.2.4. Visualization results
Finally, we have implemented the visualisation. Now, the new visualisation was done in the same page
instead of presenting results in a Matplotlib video.

Implementation details:

The simulation and visualization of network behaviour were done through communication between
client-side JavaScript and server-side Python code. The Python backend, used the Bottle framework,
received requests from the frontend to start and stop simulations, and provided simulation data upon
request. It also managed the state of the simulation and handled communication with external systems.
On the frontend, JavaScript code visualised the simulation process, sending requests to start and stop
simulations, and periodically fetching and processing simulation data from the server. This data was
then used to update the visualization of ships’ positions, orientations, and connections on the user
interface.

30

7. Testing & Validation

7.1. Testing strategy
Because of the varied domains tackled by our project, we will consider a different testing strategy per
component.

7.1.1. State handler
Objective: validate that incoming messages are handled and processed correctly, and are sent to the
appropriate consumer components in the expected format.
The state handler is responsible for managing the communication between components, as well as ag-
gregating the incoming data and processing it before sending it to the consumer components. As such,
we decided to use black-box testing to verify its behaviour based on incoming packets by monitoring
the output in its sockets. To achieve this, we used the unittest python module, to mock input and
output without the need to run the whole system.

7.1.2. BTC handler
Objective: verify the accuracy of the data used for generating sent commands.
The BTC handler interacts with an external system, which poses difficulty to fully tests its behaviour.
As such, we decided to use unit testing for its internal processing, and verify the data it uses to generate
the sent commands.

7.1.3. BTC network
Objective: verify the correctness of the batman network environment generated using the DSM sim-
ulation.
Testing the network between the Alix devices was done with the batctl command line utility, which
allows to list the direct neighbours of each device and to ping trace between devices to verify that the
correct topology is used by the actual network. To test that the correct bandwidth is used for each link,
we used the iperf command line utility, which given a server and client device, monitors the max
bandwidth and other link proprieties between them.

7.1.4. Configuration and Visualization
Objective: validate configuration and visualization functionality, usability, compatibility, and perfor-
mance across the entire system.
To test the configuration and visualization component, we will utilize following testing method, to
verify that the configuration and visualization component is working as expected:
End-to-end testing: testing the entire application from start to finish, simulating real-world user sce-
narios. It verifies the functionality, performance, and reliability of the system as a whole.

Testing Description
1 Functional testing ▶ Verify that all features and functionalities work as expected ac-

cording to the provided use cases.
▶ Ensure that user interactions produce the intended outcomes

without errors.
2 Compatibility testing ▶ Test the component across different browsers (Chrome, Firefox,

Safari, etc.) to ensure compatibility.
▶ Verify that the component functions correctly on different oper-

ating systems (Windows, macOS, Linux).

31

3 Usability Testing ▶ Evaluate the user interface for intuitiveness and ease of use.
▶ Confirm that users can perform tasks efficiently without confu-

sion.
4 Performance Testing ▶ Assess the component’s performance under various conditions

(e.g., different network sizes, node configurations).
▶ Measure the response time for user actions and ensure that the

application remains responsive.

Table 2: Configuration and visualization testing strategy

Table 2 describes testing strategy for configuration and visualization. This type of testing aims to sim-
ulate real-world scenarios and user interactions to ensure that the component meet the testing objec-
tives.

7.2. Testing plan

7.2.1. State handler

Test case Description
1 Handle Location Mes-

sages
Test if the handle_msg function in the state_handler module cor-
rectly processes a message of type LOCATIONS. This test simulates
the scenario where a message containing location data is received.
The test initializes a mock message object with type LOCATIONS
and a set of coordinates. It then encodes this message into bytes and
simulates the reception of this message. The test ensures that the
message is sent to the appropriate addresses defined in the config-
uration. Additionally, it verifies that the locations attribute in the
state_handler module is updated with the received coordinates.

2 Handle Connection Mes-
sages

Test if the handle_msg function correctly processes a message of
type CONNECTIONS. This test simulates the scenario where a mes-
sage containing connection data is received. The test constructs a
mock message object with type CONNECTIONS, including active
connections, node ID, frequencies, and sequence number. It then en-
codes this message into bytes and simulates its reception. The test
ensures that the message is forwarded to the appropriate addresses
defined in the configuration. It also validates that the connections
and frequencies dictionaries in the state_handler module are up-
dated correctly with the received data for the respective node ID.

Table 3: State handler testing plan

Table 3 outlines a systematic testing approach for the functionality of handling messages in the state
handler module. Each test case corresponds to a specific message type scenario and verifies the correct
processing and propagation of data within the system. The tests are designed to ensure comprehen-
sive coverage of message handling functionalities, validating both the sending and updating of data
attributes. Following execution, the tests contribute to ensuring the robustness and reliability of the
system’s communication mechanisms.

32

7.2.2. Configuration and Visualization

Test case Description
1 Start Simulation (Use Case

1)
Click on the “Simulate” button and verify that the simulation starts
in the same page. Confirm that user cannot change any configura-
tions, but only stop and pause the simulation.

2 Node Selection (Use Case
2)

Click on a node and verify that it becomes selected. Ensure that
only one node can be selected at a time. Test deselecting a node by
clicking ‘Finish Route’ button.

3 Node Creation (Use Case
3)

Click on the “Add ship” button, select from a drop-down list and
verify that a new node is added to the canvas of correct type. Test
creating multiple nodes and verify their placement.

4 Node Deletion (Use Case
4)

Select a node and click on the “Remove” button, select “Selected
ship”. Verify that the selected node is removed from the canvas.
Repeat the test, but instead using ‘del’/’backspace’ key on the key-
board.

5 Node Position Configura-
tion (Use Cases 5-7)

Test adjusting node position graphically by dragging and dropping.
Verify that the node’s position updates accordingly.

6 Antenna number (Use
Case 8)

When creating a node ensure that the created ships have a correct
number of antennas according to its size.

7 Movement Configuration
(Use Cases 9-11)

Specify time of arrival for a selected node. Verify that the node’s
movement parameters such as maximum speed are applied during
simulation.

8 Path creation (Use Cases
12-14)

Draw a path for a selected node by creating waypoints. Confirm
the drawn path and ensure it follows the intended trajectory. Test
clearing the node’s path and verify that all waypoints are removed
from the JSON file.

9 Configuration Saving and
Loading (Use Cases 15-16)

Save the current network configuration to a JSON file. Load a JSON
configuration file and verify that the network situation is restored
in the browser.

10 Cross-Browser and Cross-
Platform Testing

Test the component on different browsers and operating systems
to ensure compatibility.

11 Usability Testing Evaluate the user interface for usability and user-friendliness.
12 Performance and Load

Testing
Assess the component’s performance in various scenarios, like
large network sizes. Measure the response time for user interac-
tions and ensure acceptable performance levels.

Table 4: configuration and visualization testing plan

Table 4 describes a step-by-step testing plan for each of the use cases to ensure that each use case is
covered, and each testing scenario follows one of the testing strategies. The tests are carried out by the
development team and usability is verified with the client to ensure that the interface is user-friendly
and easy to understand.

33

7.3. Testing results

7.3.1. State handler

Test case Passed Result
1 Handle Location Messages ✓ Unit test passed successfully.
2 Handle Connection Messages ✓ Unit test passed successfully.

Table 5: State handler testing results

Table 5 describes the testing results for the state handler. All tests passed successfully, thus the
state_handler module correctly processes messages of type LOCATIONS and CONNECTIONS.

7.3.2. Configuration and Visualization

Test case Passed Result
1 Start Simulation ✓ When a simulate button is clicked, the page is updated and

user options are turned off. The simulation starts.
2 Node Selection ✓ The node gets highlighted in light green when selected. Only

one node is selected at a time
3 Node Creation ✓ Node creation works. The created node corresponds to the

selected type of the drop-down list.
4 Node Deletion ✓ Node deletion works. Only one node can be deleted at a time,

unless delete all nodes and waypoints option is chosen.
5 Node Position Config-

uration
✓ Single node can be dragged and dropped. It’s waypoints po-

sitions are adjusted as well.
6 Antenna number ✓ Each type of ship is associated with a number of antennas.

Correct antenna numbers are on the canvas per each node
type.

7 Movement Configura-
tion

✓ Arrival time can be specified per each waypoint and the
node’s speed is bounded by the maximum.

8 Path creation ✓ Waypoints can be created sequentially, last waypoint can be
removed using a delete button and associated option. Cor-
rect trajectory is followed in the output. When waypoints
are removed, the configuration file is updated.

9 Configuration Saving
and Loading

✓ Saving configuration prompts the user to save the file wher-
ever they want, in a correct JSON format. Loaded configu-
ration overwrites the canvas and allows users to adjust the
network situation.

10 Cross-Browser and
Cross-Platform Testing

✓ The configuration and visualization was tested on: Linux,
macOS and Windows, in following browsers: Chrome and
Firefox.

11 Usability Testing ✓ The interface is responsive and easy to understand. The but-
tons are self-explanatory. Can be improved by adding the
manual into a dialogue window/pop-up for the user explain-
ing all the hot-keys and features.

34

Test case Passed Result
12 Performance and Load

Testing
! Generally the application is working as expected. But, has

responsiveness issues, such as zooming in and out, can affect
the canvas look. While refreshing solves the issues, it means
that user’s progress would be lost, unless the user saves the
configuration beforehand.

Table 6: Configuration and visualization testing results

Table 6 describes the testing results. The majority of tests passed, and all essential features performed as
intended, providing users with flexibility and control over network simulation. Despite minor respon-
siveness issues during zoom operations, the module generally delivers as expected, with refreshing
acting as a solution to any unexpected glitches.

35

8. Future work

In this section we will discuss further work to be done on this project, opportunities we found during
development, or suggestions for future developers.

8.1. DSM - BTC integration
The integration between the DSM and BTC relies on the DND algorithm to compute active connections
between nodes, but also on the RSSI value of each link to compute the quality of the connections. As
the DSM was not initially designed for the purpose of producing this data, the code surrounding this
could be further improved to separate and properly document these two functionalities. The code for
the computation of the link proprieties can be further improved to take into account parameters like
loss and delay in a dynamic way based on the simulation.

8.2. BTC Virtualization
The current physical system of the BTC relies on using Alix2d2 embedded devices. This limits both
the total number of nodes that can be simulated, and the processing that can be run on these nodes.
Development of applications that rely on this network would need to keep the limitations of these
devices into account. A proposed solution to this problem is either to entirely virtualize the Alix de-
vices, meaning the whole system should be runnable on a single machine, or to use the Alix devices
as proxies for virtual machines that would use the network for communication between each other.

8.3. Configuration page
In the current state, the configuration component is suitable to verify various scenarios for Maritime-
Manet, but improvements to the user interface and movement simulation are advisable. The following
are the main points to be addressed in the future:

▶ Overlapping elements in the input configurator sometimes has unexpected or buggy behaviour.
This often happens when trying to switch between ships before finishing the route, or trying to
create overlapping waypoints for ships.

▶ Certain scenarios would require more fine-grained or specific movement, such as nodes moving
together, synchronizing or waiting in a certain spot before continuing. Currently, this has to be
done manually by the user, but dedicated movements for such use cases would be advisable, as
they make the job of the user much easier.

▶ The current movement was designed to be able to handle the required scenarios, i.e. splitting and
joining of groups of ships, testing hand-over between ships with constantly changing network
topology. Moving to a more realistic movement simulation would be beneficial for users with ex-
perience in the navy domain. This could be done by defining different movement logic depending
on the platform of the node.

▶ Additionally, the platforms currently defined serve for testing purposes only, and do not repre-
sent the actual proprieties of a boat. Defining these proprieties based on real life data would be
advisable for improving the accuracy of the system.

36

9. Reflection On Process

9.1. Tasks distribution
B. Colţa D. Negru M. Spinei N. Jongejan Y. Alyoshyna

DSM integration ✓ ✓
BTC integration ✓

Architecture design ✓ ✓
Configuration design ✓ ✓

Web user interface ✓ ✓
Testing ✓ ✓ ✓ ✓
Report ✓ ✓ ✓ ✓ ✓
Poster ✓ ✓ ✓ ✓ ✓

Presentation slides ✓ ✓ ✓ ✓ ✓

9.2. Group reflection
As a team, we faced a steep learning curve within a limited timeframe, picking up various new con-
cepts and technologies in the early stages of the project. This initial learning process resulted in some
tension as we worked to figure out unfamiliar concepts. However, as the project progressed, we suc-
cessfully developed many features, with significant progress made in the second half of the project.

We are extremely grateful for the incredible support and guidance provided by our client, who has
been actively involved since day one, offering insights and helping us refine our work. His involvement
played a significant role in shaping the project’s direction and outcomes. Individually, we have learned
a lot about real-world’s companies approach to requirements elicitation, writing project proposals and
designing system architectures.

Overall, we are pleased with the results we achieved as a team. Despite the challenges we faced, each
of us made contributions using their unique skill set, thus together we ensured the project’s comple-
tion. Moving forward, we recognize the importance of better balancing the workload distribution and
continue to appreciate the collaborative effort.

37

10. Conclusion

In conclusion, the design report demonstrates the successful completion of the project, adhering to the
waterfall project management approach (with some minor changes). The integration of the Distributed
Simulator for MaritimeManet (DSM) and the Batman Topology Configurator (BTC) stayed true to the
project’s scope and objectives, achieving seamless communication and dynamic topology adjustments
between ALIXes.

The integration process followed a structured approach, progressing through phases of requirements
analysis, system design, implementation, testing and documentation. The deployment and evaluation
phases fall outside the scope of our project. Weekly client meetings ensured alignment with the client’s
expectations and minimized risks associated with changing requirements and technical challenges.

The user interface underwent many changes, offering intuitive configuration and visualization fea-
tures. It provides a user-friendly environment for setting up and visualizing network configurations
in real-time. The interaction between the web client-side and the server-side allows for smoother dy-
namic visualization of network behaviour in comparison to the initial Matplotlib visualization.

In summary, the integration of the DSM and the BTC, paired with the new configuration and visual-
ization interface, provides Thales with a true digital twin for testing and simulating swarm applications
in a lab environment.

38

	Introduction
	Companys background
	Domain description
	Assignment description
	Report structure
	Components description

	Approach
	Project management approach
	Scope of the project
	Communication with the client

	Requirements Specification
	Requirements capturing
	Stakeholders
	Functional requirements
	Non-functional requirements

	Risk Analysis
	System Architecture
	Introduction
	Initial design
	Architecture Style
	Final Design
	Components
	Inter-component communication
	Further Decomposition
	Technologies/Frameworks
	Configuration and Visualization component Design Details
	Introduction
	Hi-Fi prototype
	Option 1
	Option 2
	Window for configuring a node

	Prototype
	Configuration data format
	Activity diagram
	Use cases
	Use case diagram
	Design choices

	Results
	DSM & BTC integration results
	Configuration and Visualization interface results
	User interface
	Design comparisons and added features
	Implementation details
	Visualization results

	Testing & Validation
	Testing strategy
	State handler
	BTC handler
	BTC network
	Configuration and Visualization

	Testing plan
	State handler
	Configuration and Visualization

	Testing results
	State handler
	Configuration and Visualization

	Future work
	DSM - BTC integration
	BTC Virtualization
	Configuration page

	Reflection On Process
	Tasks distribution
	Group reflection

	Conclusion

